- Apache (1)
- api (2)
- arcus (8)
- bias (4)
- census (1)
- clinical data (6)
- coding (1)
- cohorts (1)
- consent (1)
- crowdsourcing (1)
- cTAKES (2)
- dashboards (1)
- data (4)
- data catalog (2)
- data collection (10)
- data combining (1)
- data discovery (1)
- data integration (1)
- data management (1)
- data munging (4)
- data privacy (2)
- data reshaping (1)
- data security (1)
- data storage (3)
- data transformation (1)
- data types (3)
- data visualization (13)
- demographics (1)
- descriptive statistics (1)
- dplyr (2)
- EHR (3)
- electronic health records (3)
- environmental data (1)
- Excel (2)
- geographic data (1)
- geojson (1)
- ggplot (3)
- ggplot2 (4)
- git (3)
- Google Sheets (1)
- graphs / networks (1)
- high performance computing (1)
- history (1)
- human subjects (4)
- interactions (1)
- learner story (1)
- library science (1)
- linear algebra (1)
- linux (1)
- literate statistical programming (7)
- literate-statistical-programming (1)
- machine learning (6)
- mathematics (1)
- mean (1)
- measures of central tendency (1)
- measures of dispersion (1)
- mechanical turk (1)
- median (1)
- metadata (3)
- missing data (1)
- missingness (1)
- mode (1)
- natural language processing (3)
- networkx (1)
- NIMH (2)
- NLP (3)
- nlp (2)
- nltk (2)
- omics (1)
- ontology (1)
- privacy (4)
- python (11)
- r (44)
- RDoC (2)
- redcap (9)
- REDCap (1)
- regex (1)
- regression (3)
- reliability (1)
- reproducibility (5)
- reproducible research (9)
- responsible conduct of research (7)
- social determinants of health (1)
- spreadsheets (2)
- sql (2)
- ssh (1)
- standard deviation (1)
- statistics (16)
- Sublime Text (1)
- swirl (1)
- terminal emulation (1)
- text processing (1)
- tidy data (1)
- tidyverse (1)
- validity (1)
- variable types (1)
- variables (3)
- variance (1)
- version control (1)

## Apache

## api

## arcus

- Arcus Data Repository: A Fast Track to Research
- Arcus Annotations and cTAKES
- Arcus Annotations and RDoC
- Arcus Annotations: Harvesting Data from Text Notes
- Feasibility Analysis Using Arcus Cohort Discovery
- Meet the Arcus Library Science Team
- Why Archivists and Librarians?
- Arcus's Virtual Biobank

## bias

- FIPs and the Belmont Report: Divergence
- FIPs and the Belmont Report: Similarities
- FIPs and the Belmont Report: Principles
- Social Justice and Data Science

## census

## clinical data

- Arcus Data Repository: A Fast Track to Research
- Date Pairing in R
- Data Preparation
- Clinical Data in R
- Arcus Clinical Cohorts
- Clinical Data at CHOP

## coding

## cohorts

## consent

## crowdsourcing

## cTAKES

## dashboards

## data

## data catalog

## data collection

- Data Preparation
- Best Practices for REDCap Variables and Instruments
- Collecting Sex and Gender Data
- REDCap Race and Ethnicity Data Collection
- REDCap: PHI and Permissions
- REDCap Data Collection Overview
- REDCap Free Text Collection
- REDCap Field Types
- REDCap Free Text Collection
- Cartesian Result Sets

## data combining

## data discovery

## data integration

## data management

## data munging

- How do I collapse data from several columns into one?
- Tiny Munge
- Data Preparation
- Getting to one row

## data privacy

## data reshaping

## data security

## data storage

## data transformation

## data types

## data visualization

- R 4 Beginners Chapter 4 - Data Visualization with ggplot2, Part II
- R 4 Beginners Chapter 3 - Data Visualization with ggplot2
- Descriptive Statistics: The Bullet
- Python Lab for Beginners
- Customizing ggplot2 Visualizations With ggThemeAssist
- ggplot overview
- Intro to Machine Learning: Trees
- Understanding Pearson's r
- Statistical Intervals and Visualizations: Difference Between Means
- R Lab for Beginners
- Base R Plotting
- Sparklines in ggplot2
- Jupyter 101

## demographics

## descriptive statistics

## dplyr

## EHR

- Arcus Annotations and cTAKES
- Arcus Annotations and RDoC
- Arcus Annotations: Harvesting Data from Text Notes

## electronic health records

- Arcus Annotations and cTAKES
- Arcus Annotations and RDoC
- Arcus Annotations: Harvesting Data from Text Notes

## environmental data

## Excel

## geographic data

## geojson

## ggplot

- R 4 Beginners Chapter 4 - Data Visualization with ggplot2, Part II
- R 4 Beginners Chapter 3 - Data Visualization with ggplot2
- ggplot overview

## ggplot2

- R 4 Beginners Chapter 4 - Data Visualization with ggplot2, Part II
- R 4 Beginners Chapter 3 - Data Visualization with ggplot2
- Statistical Intervals and Visualizations: Difference Between Means
- Sparklines in ggplot2

## git

## Google Sheets

## graphs / networks

## high performance computing

## history

## human subjects

- FIPs and the Belmont Report: Divergence
- FIPs and the Belmont Report: Similarities
- FIPs and the Belmont Report: Principles
- Social Justice and Data Science

## interactions

## learner story

## library science

## linear algebra

## linux

## literate statistical programming

- Version control your writing
- Getting more from R-Markdown
- R 4 Beginners Chapter 6 - Reproducible Programming
- Statistical Programming Languages
- Why Use Literate Statistical Programming?
- R Markdown 101
- Literate Statistical Programming

## literate-statistical-programming

## machine learning

- Getting Started with lasso regression in R
- What Type of Machine Learning Should I Use?
- Arcus Annotations and cTAKES
- Arcus Annotations and RDoC
- Arcus Annotations: Harvesting Data from Text Notes
- Intro to Machine Learning: Trees

## mathematics

## mean

## measures of central tendency

## measures of dispersion

## mechanical turk

## median

## metadata

## missing data

## missingness

## mode

## natural language processing

- Arcus Annotations and cTAKES
- Arcus Annotations and RDoC
- Arcus Annotations: Harvesting Data from Text Notes

## networkx

## NIMH

## NLP

- Arcus Annotations and cTAKES
- Arcus Annotations and RDoC
- Arcus Annotations: Harvesting Data from Text Notes

## nlp

## nltk

## omics

## ontology

## privacy

- Data Sharing and Privacy: A Very Cursory Overview
- FIPs and the Belmont Report: Divergence
- FIPs and the Belmont Report: Similarities
- FIPs and the Belmont Report: Principles

## python

- Using the REDCap API
- What Type of Machine Learning Should I Use?
- User Groups at CHOP
- Cloud Tools for the Unconvinced
- Comparing Parts of Speech with NLTK
- My File is Over There: File Paths for Data Scientists
- Python Lab for Beginners
- Natural Language Processing with NLTK
- Statistical Programming Languages
- Intro to NetworkX
- Jupyter 101

## r

- Using the REDCap API
- Version control your writing
- Getting more from R-Markdown
- How do I collapse data from several columns into one?
- Getting Started with lasso regression in R
- R 4 Beginners Chapter 7 - Reading Tabular Data
- ANOVA tables in R
- Linear Regression in R: Annotated Output
- R 4 Beginners Chapter 6 - Reproducible Programming
- R 4 Beginners Chapter 5 - Data Transformation
- Josh Taban's CHOP Internship
- R 4 Beginners Chapter 4 - Data Visualization with ggplot2, Part II
- R 4 Beginners Chapter 3 - Data Visualization with ggplot2
- R 4 Beginners Chapter 2 - Coding Basics
- R 4 Beginners Chapter 1 - Introduction and Installation
- What Type of Machine Learning Should I Use?
- The REDCap API and Windows
- User Groups at CHOP
- Cloud Tools for the Unconvinced
- Swirl: Learn R in R
- Variable Types
- Do Patterns in Missing Data Matter?
- Tiny Munge
- Date Pairing in R
- Data Preparation
- Clinical Data in R
- My File is Over There: File Paths for Data Scientists
- Ordinary Linear Regression in R
- Customizing ggplot2 Visualizations With ggThemeAssist
- Mapping Environmental Exposures
- Data Combining in R
- ggplot overview
- Intro to Machine Learning: Trees
- Understanding Pearson's r
- Statistical Programming Languages
- R Markdown 101
- R Lab for Beginners
- Scripted Analysis for Reproducibility
- Base R Plotting
- Literate Statistical Programming
- Sparklines in ggplot2
- Welcome to the Tidyverse!
- Writing Functions in R
- When R Gets Too Helpful

## RDoC

## redcap

- The REDCap API and Windows
- Best Practices for REDCap Variables and Instruments
- Collecting Sex and Gender Data
- REDCap Race and Ethnicity Data Collection
- REDCap: PHI and Permissions
- REDCap Data Collection Overview
- REDCap Free Text Collection
- REDCap Field Types
- REDCap Free Text Collection

## REDCap

## regex

## regression

- Getting Started with lasso regression in R
- Understanding Interactions in Linear Models
- Ordinary Linear Regression in R

## reliability

## reproducibility

- Version control your writing
- Getting more from R-Markdown
- R 4 Beginners Chapter 6 - Reproducible Programming
- The Spreadsheet Betrayal
- Code Readability

## reproducible research

- Version control your writing
- Getting more from R-Markdown
- R 4 Beginners Chapter 6 - Reproducible Programming
- Why Use Literate Statistical Programming?
- Distributed Humaning
- Interrogating the Data Until it Confesses
- Statistical Intervals and Visualizations: Difference Between Means
- Data Dictionaries
- Scripted Analysis for Reproducibility

## responsible conduct of research

- FIPs and the Belmont Report: Divergence
- FIPs and the Belmont Report: Similarities
- The p Value Controversy
- FIPs and the Belmont Report: Principles
- Social Justice and Data Science
- Clinical Data at CHOP
- Recording Consent

## social determinants of health

## spreadsheets

## sql

## ssh

## standard deviation

## statistics

- Getting Started with lasso regression in R
- ANOVA tables in R
- Linear Regression in R: Annotated Output
- Understanding Interactions in Linear Models
- What Type of Machine Learning Should I Use?
- The Argument Against Aggregation
- Statistics Chapter 1: Measures of Central Tendency and Dispersion
- Variable Types
- Do Patterns in Missing Data Matter?
- Descriptive Statistics: The Bullet
- Ordinary Linear Regression in R
- Null Hypothesis Statistical Testing (NHST)
- The p Value Controversy
- Understanding Pearson's r
- Interrogating the Data Until it Confesses
- Statistical Intervals and Visualizations: Difference Between Means