Joy Payton
Joy Payton
14 min read

Comparing Parts of Speech with NLTK

In an earlier post, I showed you how to work with NLTK (the Natural Language Toolkit) in Python, using the texts that are optionally included with NLTK. There, we just sort of poked around trying various things. In this post, I will explain an actual statistical investigation of differences in the use of parts of speech using the same tools.

A bit of background: I recently ran a study comparing some parts of speech in blog posts by people who disclose an autism diagnosis to those parts of speech in blog posts by people without such a disclosure (presumed to not have autism). This is obviously messy public data not generated in a lab, but I found the signal I expected! You can view all the scripts used in my project at the GitHub repo for the study, if you’re interested.

In this post, we’re going to reproduce just the language analysis bit I used, not the web scraping. We’ll do the language analysis of parts of speech in State of the Union (SOTU) addresses. My (completely made up) hypothesis is that republicans and democrats differ in their use of comparative and superlative adjectives and adverbs (“best”, “most”, “angrier”, “grander”). I propose that one party has more extreme ways of describing the state of the nation in their State of the Union addresses.

Want to download this code instead of typing it yourself or copy/pasting? You can download:

Get Started

We’ll start with the obvious:

import nltk

Then we’ll import some texts to work with. If you haven’t already (or, if it’s been awhile), do the following, and (in a new window), choose to download “all”. It might take a while, but it’s worth it to have a lot of texts and tools to play with:

nltk.download()

Once that is accomplished (close the pop-up window), we can access some texts:

from nltk.corpus import state_union

Let’s take a peek at what’s inside!

state_union.fileids()
	['1945-Truman.txt',
	 '1946-Truman.txt',
	 '1947-Truman.txt',
	 '1948-Truman.txt',
	 '1949-Truman.txt',
	 '1950-Truman.txt',
	 '1951-Truman.txt',
	 '1953-Eisenhower.txt',
	 '1954-Eisenhower.txt',
	 '1955-Eisenhower.txt',
	 '1956-Eisenhower.txt',
	 '1957-Eisenhower.txt',
	 '1958-Eisenhower.txt',
	 '1959-Eisenhower.txt',
	 '1960-Eisenhower.txt',
	 '1961-Kennedy.txt',
	 '1962-Kennedy.txt',
	 '1963-Johnson.txt',
	 '1963-Kennedy.txt',
	 '1964-Johnson.txt',
	 '1965-Johnson-1.txt',
	 '1965-Johnson-2.txt',
	 '1966-Johnson.txt',
	 '1967-Johnson.txt',
	 '1968-Johnson.txt',
	 '1969-Johnson.txt',
	 '1970-Nixon.txt',
	 '1971-Nixon.txt',
	 '1972-Nixon.txt',
	 '1973-Nixon.txt',
	 '1974-Nixon.txt',
	 '1975-Ford.txt',
	 '1976-Ford.txt',
	 '1977-Ford.txt',
	 '1978-Carter.txt',
	 '1979-Carter.txt',
	 '1980-Carter.txt',
	 '1981-Reagan.txt',
	 '1982-Reagan.txt',
	 '1983-Reagan.txt',
	 '1984-Reagan.txt',
	 '1985-Reagan.txt',
	 '1986-Reagan.txt',
	 '1987-Reagan.txt',
	 '1988-Reagan.txt',
	 '1989-Bush.txt',
	 '1990-Bush.txt',
	 '1991-Bush-1.txt',
	 '1991-Bush-2.txt',
	 '1992-Bush.txt',
	 '1993-Clinton.txt',
	 '1994-Clinton.txt',
	 '1995-Clinton.txt',
	 '1996-Clinton.txt',
	 '1997-Clinton.txt',
	 '1998-Clinton.txt',
	 '1999-Clinton.txt',
	 '2000-Clinton.txt',
	 '2001-GWBush-1.txt',
	 '2001-GWBush-2.txt',
	 '2002-GWBush.txt',
	 '2003-GWBush.txt',
	 '2004-GWBush.txt',
	 '2005-GWBush.txt',
	 '2006-GWBush.txt']

Well, our dataset is limited, but it’s good enough for us to get started!

We can peer inside one more carefully (here, I’m only showing a bit of the output):

print(state_union.raw('2006-GWBush.txt'))
	PRESIDENT GEORGE W. BUSH'S ADDRESS BEFORE A JOINT SESSION OF THE 
	CONGRESS ON THE STATE OF THE UNION
	 
	January 31, 2006

	THE PRESIDENT: Thank you all. Mr. Speaker, Vice President Cheney, 
	members of Congress, members of the Supreme Court and diplomatic corps, 
	distinguished guests, and fellow citizens: Today our nation lost a 
	beloved, graceful, courageous woman who called America to its founding 
	ideals and carried on a noble dream. Tonight we are comforted by the 
	hope of a glad reunion with the husband who was taken so long ago, and 
	we are grateful for the good life of Coretta Scott King. (Applause.)...

Proof of Concept

First, we’ll create a function that will take a single text, and analyze it for parts of speech. First we’ll import a couple of needed modules:

from collections import Counter
from nltk.text import Text

And then we’ll create a function that turns the text to lower case, breaks it into words (tokenizing it), then assigns a part of speech for each token and returns the count for each part of speech in a dictionary:

def analyzeTextForPOS (text):
    # Tokenize the text
    tokens = nltk.word_tokenize(text.lower())
    text = nltk.Text(tokens)
    # get parts of speech for each token
    tags = nltk.pos_tag(text)
    # count how many times each pos is used
    counts = Counter(tag for word,tag in tags)
    # note that the POS abbreviations can be understood here:
    # https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
    # return the counts as a dictionary
    return(dict(counts))

Let’s try the function to see if we get the kind of output we expect:

analyzeTextForPOS(state_union.raw('2006-GWBush.txt'))
	{'NN': 1080,
	 'VBD': 44,
	 'POS': 13,
	 'IN': 725,
	 'DT': 525,
	 'JJ': 515,
	 'CD': 71,
	 ',': 319,
	 ':': 81,
	 'PRP': 218,
	 '.': 336,
	 'NNS': 422,
	 'CC': 300,
	 'PRP$': 156,
	 'VBN': 110,
	 'WP': 19,
	 'TO': 175,
	 'VBP': 196,
	 'RB': 177,
	 '(': 68,
	 ')': 68,
	 'VB': 328,
	 'RP': 17,
	 'RBS': 4,
	 'VBZ': 130,
	 'EX': 9,
	 'MD': 122,
	 'JJR': 44,
	 'WDT': 29,
	 'VBG': 121,
	 'PDT': 5,
	 'WRB': 9,
	 'RBR': 8,
	 '``': 1,
	 "''": 1,
	 'JJS': 7,
	 '$': 4}

The output is a bit confusing. We can go to the Penn Treebank homepage to find out what these labels mean. Or, we could do the following, which shows examples (output truncated for this post):

nltk.help.upenn_tagset()
	$: dollar
	    $ -$ --$ A$ C$ HK$ M$ NZ$ S$ U.S.$ US$
	'': closing quotation mark
	    ' ''
	(: opening parenthesis
	    ( [ {
	): closing parenthesis
	    ) ] }
	,: comma
	    ,
	--: dash
	    --
	.: sentence terminator
	    . ! ?
	:: colon or ellipsis
	    : ; ...
	CC: conjunction, coordinating
	    & 'n and both but either et for less minus neither nor or plus so
	    therefore times v. versus vs. whether yet
	CD: numeral, cardinal
	    mid-1890 nine-thirty forty-two one-tenth ten million 0.5 one forty-
	    seven 1987 twenty '79 zero two 78-degrees eighty-four IX '60s .025
	    fifteen 271,124 dozen quintillion DM2,000 ...
	DT: determiner
	    all an another any both del each either every half la many much nary
	    neither no some such that the them these this those
	EX: existential there
	    there
	FW: foreign word
	    gemeinschaft hund ich jeux habeas Haementeria Herr K'ang-si vous
	    lutihaw alai je jour objets salutaris fille quibusdam pas trop Monte
	    terram fiche oui corporis ...

Looking there, we discover, for example, that PRP is the label for personal pronoun (like me, you, they) and PRP$ is the label for possessive pronoun (like my, your, their).

Great, but how can we do this for every text, combining where needed (e.g. combining all of a single president’s SOTU addresses into one measurement) and comparing where appropriate (Republican vs Democrat, 1960s vs 1980s)? One approach is to build a table of counts such that we have all the counts for all the texts, and then we can remix as needed for our study.

Note that when we get into analysis like this, there are usually several ways to proceed – so if you would approach the problem differently, that’s okay!

Textual Analysis

We’re going to create a function that sets a few things up, then iterates over every file in the state of the union corpus and collects three sets of data:

  • The “basic” data of the president’s name, the year of the address, and a sequence number, if applicable
  • The “part of speech” data that counts each part of speech in that state of the union address
  • The total parts of speech that were tagged

We’ll then combine these three sets into one single data frame, which we return as the result.

First, we need to load a couple of libraries:

import pandas as pd
import re

And now we’ll create the function that does all the good stuff!

def analyzeTexts():

    # Create a pattern for the regular expression (regex)
    # we're going to do further on.
    
    pattern = "(\d+)\-([A-Za-z]+)\-?(\d?)\.txt"
    # This pattern captures the date:     (\d+)
    # Then looks for a dash:              \-
    # Then captures a name:               ([A-Za-z]+)
    # Then looks for an optional dash:    \-?
    # Then captures an optional number:   (\d?)
    # Then looks for the .txt ending:     \.txt

    all_basic_info = []  # list of basic info dicts
    all_pos_info = []    # list of part of speech dicts
    all_totals = []      # list of total POS counted dicts
    
    # Note: we create three lists so that when we assemble
    # a data frame, these three types of information can be
    # placed in order, with basic info followed by pos counts
    # followed by total.  Since dicts are inherently unordered,
    # if we did a single list, we'd end up with columns in 
    # alphabetical order, which is not what we want.

    
    # iterate over files and extract and organize data
    
    for filename in state_union.fileids():
        address_details = {}    # empty dict
        pos = {}                # empty dict
        totals = {}             # empty dict
        
        # Below, we're going to use  regular expressions to 
        # extract meaningful info from the file name.
        
        m = re.match(pattern, filename)
        if m:
            address_details['address_date'] = m.group(1)
            address_details['president_name'] = m.group(2)
            address_details['optional_sequence'] = m.group(3)
            all_basic_info.append(address_details)  # add details of this file
            
            pos = analyzeTextForPOS(state_union.raw(filename))
            all_pos_info.append(pos)                # add part of speech for this file
            
            totals['Total'] = sum(pos.values())
            all_totals.append(totals)               # add total POS for this file

        else:
            print("Wonky problem with filename " + filename)
        
    return(pd.DataFrame(all_basic_info).join(pd.DataFrame(all_pos_info).join(pd.DataFrame(all_totals))))
    # return the results in a data frame -- leftmost columns are basic info,
    # then the part of speech info, then the totals in the rightmost column.

Now, let’s execute that function!

sotu_data = analyzeTexts()

Take a peek at what we’ve built:

sotu_data
address_date optional_sequence president_name $ '' ( ) , . : ... VBG VBN VBP VBZ WDT WP WP$ WRB `` Total
0 1945 Truman NaN 2.0 NaN NaN 92 114 6 ... 24 55 46 38 8 6 NaN 4 NaN 2108
1 1946 Truman 6.0 14.0 50.0 50.0 1026 1132 136 ... 391 938 596 537 210 45 2.0 48 17.0 29919
2 1947 Truman NaN 4.0 1.0 1.0 238 282 16 ... 97 165 162 113 40 11 1.0 17 4.0 6612
3 1948 Truman 13.0 NaN NaN NaN 156 269 10 ... 88 133 151 99 41 8 2.0 14 NaN 5609
4 1949 Truman 3.0 2.0 NaN NaN 148 184 6 ... 57 91 105 72 29 3 NaN 2 2.0 3769
5 1950 Truman 4.0 NaN NaN NaN 201 231 13 ... 78 133 166 113 40 12 1.0 6 NaN 5609
6 1951 Truman 1.0 1.0 NaN NaN 174 243 3 ... 70 69 165 76 23 10 NaN 6 1.0 4450
7 1953 Eisenhower NaN NaN 12.0 12.0 286 339 65 ... 100 191 143 176 46 7 2.0 7 NaN 7706
8 1954 Eisenhower 4.0 NaN 6.0 6.0 261 287 50 ... 92 163 145 131 38 11 3.0 18 NaN 6648
9 1955 Eisenhower 4.0 3.0 NaN NaN 369 331 65 ... 139 165 150 120 25 9 1.0 5 3.0 8086
10 1956 Eisenhower NaN NaN NaN NaN 333 371 62 ... 127 273 170 158 44 8 3.0 10 NaN 9051
11 1957 Eisenhower NaN NaN 4.0 4.0 178 187 39 ... 56 105 103 97 37 8 2.0 4 NaN 4587
12 1958 Eisenhower 3.0 5.0 NaN NaN 258 246 41 ... 85 93 120 132 38 9 NaN 7 6.0 5500
13 1959 Eisenhower 3.0 1.0 NaN NaN 196 261 38 ... 87 137 155 105 31 7 1.0 15 1.0 5550
14 1960 Eisenhower 3.0 5.0 NaN NaN 262 253 37 ... 98 141 136 144 49 6 NaN 7 5.0 6230
15 1961 Kennedy NaN 3.0 NaN NaN 302 222 108 ... 89 160 180 134 44 20 1.0 20 2.0 6546
16 1962 Kennedy 7.0 12.0 NaN NaN 347 262 178 ... 104 155 149 154 28 12 6.0 10 12.0 7483
17 1963 Johnson NaN 2.0 NaN NaN 93 72 28 ... 13 28 42 31 10 11 NaN 2 2.0 1857
18 1963 Kennedy 12.0 4.0 NaN NaN 301 220 90 ... 95 106 139 152 28 20 2.0 9 4.0 6132
19 1964 Johnson 14.0 2.0 NaN NaN 186 136 42 ... 57 49 45 39 20 10 NaN 6 2.0 3624
20 1965 1 Johnson 2.0 3.0 1.0 1.0 124 259 63 ... 55 78 147 89 28 11 2.0 19 3.0 4922
21 1965 2 Johnson NaN 8.0 NaN NaN 165 196 41 ... 30 100 117 103 17 26 1.0 16 2.0 4188
22 1966 Johnson 19.0 NaN 1.0 1.0 246 260 73 ... 78 108 173 106 38 31 5.0 10 NaN 6194
23 1967 Johnson 24.0 22.0 NaN NaN 301 352 121 ... 111 176 239 140 37 22 2.0 29 20.0 8148
24 1968 Johnson 35.0 1.0 NaN NaN 192 252 144 ... 65 108 159 98 26 23 NaN 12 1.0 5597
25 1969 Johnson 13.0 7.0 NaN NaN 188 197 53 ... 53 141 177 97 27 11 NaN 11 5.0 4615
26 1970 Nixon 6.0 NaN NaN NaN 230 205 8 ... 53 92 136 103 54 13 1.0 20 NaN 4982
27 1971 Nixon 4.0 NaN NaN NaN 165 174 13 ... 59 77 93 70 38 25 NaN 20 NaN 4510
28 1972 Nixon 1.0 NaN NaN NaN 217 174 31 ... 93 94 144 82 35 21 NaN 9 NaN 4471
29 1973 Nixon NaN NaN NaN NaN 81 62 6 ... 33 34 46 25 18 1 2.0 6 NaN 1859
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
35 1979 Carter 3.0 8.0 NaN NaN 198 159 19 ... 46 80 97 67 24 9 NaN 7 8.0 3713
36 1980 Carter NaN 2.0 NaN NaN 136 163 30 ... 42 78 83 65 26 3 NaN 6 2.0 3807
37 1981 Reagan 27.0 3.0 NaN NaN 214 218 31 ... 99 118 164 99 30 24 NaN 9 3.0 5041
38 1982 Reagan 10.0 14.0 NaN NaN 276 251 49 ... 83 120 161 81 28 30 1.0 21 14.0 5908
39 1983 Reagan 4.0 5.0 NaN NaN 321 252 48 ... 104 123 150 103 35 22 NaN 9 5.0 6302
40 1984 Reagan 7.0 5.0 NaN NaN 264 293 52 ... 100 106 141 127 21 20 1.0 21 5.0 5681
41 1985 Reagan 4.0 4.0 NaN NaN 238 222 44 ... 103 88 155 109 23 20 3.0 14 4.0 4834
42 1986 Reagan 2.0 4.0 NaN NaN 214 173 40 ... 69 55 107 81 18 10 2.0 15 4.0 4010
43 1987 Reagan 4.0 17.0 NaN NaN 198 202 46 ... 74 79 117 99 17 19 3.0 11 13.0 4389
44 1988 Reagan 5.0 7.0 1.0 2.0 272 215 112 ... 91 96 135 141 38 31 2.0 20 7.0 5576
45 1989 Bush 8.0 19.0 NaN NaN 266 289 59 ... 72 103 175 92 25 21 2.0 11 20.0 5583
46 1990 Bush 3.0 4.0 NaN NaN 237 198 77 ... 45 59 127 128 24 18 1.0 24 4.0 4414
47 1991 1 Bush 4.0 2.0 NaN NaN 237 226 56 ... 58 73 136 124 21 21 NaN 23 2.0 4555
48 1991 2 Bush NaN 4.0 NaN NaN 150 182 32 ... 34 61 72 55 12 15 2.0 6 4.0 3292
49 1992 Bush 12.0 8.0 NaN NaN 286 321 38 ... 72 83 206 133 41 46 NaN 18 8.0 5896
50 1993 Clinton 19.0 2.0 NaN NaN 340 289 30 ... 126 101 291 141 39 50 NaN 18 2.0 7809
51 1994 Clinton 6.0 11.0 NaN NaN 430 396 33 ... 119 105 307 138 35 81 5.0 40 10.0 8431
52 1995 Clinton 14.0 9.0 NaN NaN 469 457 47 ... 150 158 391 179 41 78 1.0 43 8.0 10415
53 1996 Clinton 6.0 3.0 NaN NaN 304 356 31 ... 122 101 285 136 31 41 NaN 21 2.0 7129
54 1997 Clinton 6.0 3.0 NaN NaN 389 338 44 ... 95 88 197 127 36 31 3.0 19 3.0 7634
55 1998 Clinton 5.0 9.0 NaN NaN 424 368 89 ... 124 109 304 130 44 30 NaN 33 9.0 8380
56 1999 Clinton 12.0 14.0 NaN NaN 460 385 59 ... 123 127 266 124 25 33 NaN 16 14.0 8578
57 2000 Clinton 14.0 9.0 NaN NaN 511 486 82 ... 168 139 371 164 54 49 NaN 29 8.0 10379
58 2001 1 GWBush 17.0 2.0 94.0 94.0 221 378 30 ... 74 72 158 127 18 22 NaN 12 2.0 5369
59 2001 2 GWBush 1.0 1.0 31.0 31.0 187 211 58 ... 54 81 109 73 11 25 NaN 10 1.0 3577
60 2002 GWBush 1.0 4.0 77.0 77.0 218 283 70 ... 62 85 132 85 15 21 1.0 6 4.0 4701
61 2003 GWBush NaN 4.0 NaN NaN 325 280 98 ... 104 132 168 149 29 20 NaN 14 4.0 6138
62 2004 GWBush 7.0 5.0 72.0 72.0 342 347 50 ... 144 117 197 115 21 22 NaN 13 3.0 6211
63 2005 GWBush 3.0 9.0 68.0 68.0 322 299 65 ... 95 101 163 123 40 15 1.0 16 7.0 6018
64 2006 GWBush 4.0 1.0 68.0 68.0 319 336 81 ... 121 110 196 130 29 19 NaN 9 1.0 6457

Keep in mind that the numbers in the part of speech columns are just counts! We’ll have to figure out percentages, since we want to compare the relative frequency of parts of speech.

Also, we want to combine the part of speech counts and the total parts of speech counted for each president – so, all of Nixon’s SOTU speeches combined into one count, etc. The reason for this is that the number of speeches for each president are unbalanced. If we don’t combine them, we risk over-weighting the influence of one president compared to another in our statistical analysis.

We also have too many parts of speech to work with. We really want to work with just a handful.

So, we have to slim down and consolidate our large data frame. We can do this by indexing and by using the pandas groupby function.

We’ll do this in steps. First, we’ll get all rows and just the columns starting with president_name forward.

sotu_by_president = sotu_data.loc[:,'president_name':]

Then we’ll aggregate (combine rows) by president name:

sotu_by_president = sotu_by_president.groupby('president_name').sum() 

Let’s take a peek so far:

sotu_by_president
$ '' ( ) , . : CC CD DT ... VBG VBN VBP VBZ WDT WP WP$ WRB `` Total
president_name
Bush 27.0 37.0 0.0 0.0 1176 1216 262 1024 226 2257 ... 281 379 716 532 123 121 5.0 82 38.0 23740
Carter 13.0 11.0 0.0 0.0 580 571 53 600 130 1231 ... 138 252 337 233 80 34 1.0 34 11.0 12690
Clinton 82.0 60.0 0.0 0.0 3327 3075 415 2514 937 5932 ... 1027 928 2412 1139 305 393 9.0 219 56.0 68755
Eisenhower 17.0 14.0 22.0 22.0 2143 2275 397 1919 473 5399 ... 784 1268 1122 1063 308 65 12.0 73 15.0 53358
Ford 40.0 7.0 0.0 0.0 641 685 129 585 279 1432 ... 217 298 420 261 86 32 0.0 34 7.0 15462
GWBush 33.0 26.0 410.0 410.0 1934 2134 452 1699 423 3060 ... 654 698 1123 802 163 144 2.0 80 22.0 38471
Johnson 107.0 45.0 2.0 2.0 1495 1724 565 1662 576 3912 ... 462 788 1099 703 203 145 10.0 105 35.0 39145
Kennedy 19.0 19.0 0.0 0.0 950 704 376 982 250 1955 ... 288 421 468 440 100 52 9.0 39 18.0 20161
Nixon 17.0 0.0 0.0 0.0 953 817 66 710 302 2423 ... 336 432 573 392 203 81 3.0 67 0.0 21575
Reagan 63.0 59.0 1.0 2.0 1997 1826 422 1674 625 3692 ... 723 785 1130 840 210 176 12.0 120 55.0 41741
Truman 27.0 23.0 51.0 51.0 2035 2455 190 1983 1136 5997 ... 805 1584 1391 1048 391 95 6.0 97 24.0 58076

And we’ll limit to just comparative and superlative adjectives and adverbs. But we’ll also hang on to ‘Total’, because that allows us to determine the percentage of speech that each part of speech takes up.

cols_i_want = ['JJR', 'JJS','RBR','RBS', 'Total']
sotu_by_president = sotu_by_president.loc[:,cols_i_want]

We’ll separate out republicans from democrats:

republicans = ['Bush','Eisenhower','Ford','Nixon','Reagan','GWBush']
democrats = ['Carter','Clinton','Johnson','Kennedy','Truman']

republican_speech = sotu_by_president.loc[sotu_by_president.index.isin(republicans)]
democrat_speech = sotu_by_president.loc[sotu_by_president.index.isin(democrats)]

Let’s take a quick peek:

republican_speech
JJR JJS RBR RBS Total
president_name
Bush 102 44 41 12.0 23740
Eisenhower 212 80 100 43.0 53358
Ford 96 42 46 12.0 15462
GWBush 210 72 55 22.0 38471
Nixon 116 49 62 23.0 21575
Reagan 215 98 79 29.0 41741
democrat_speech
JJR JJS RBR RBS Total
president_name
Carter 65 26 21 9.0 12690
Clinton 457 230 166 55.0 68755
Johnson 206 105 64 30.0 39145
Kennedy 76 39 39 15.0 20161
Truman 217 99 67 35.0 58076

Now we have some nice, compact data frames! We still have to figure out percentages, however. We’ll divide everything by the ‘Total’ column:

democrat_speech = democrat_speech.div(democrat_speech['Total'], axis=0)
republican_speech = republican_speech.div(republican_speech['Total'], axis=0)

Statistical Analysis

Do Republicans and Democrats differ in the way they use comparative and superlative adjectives and adverbs in their State of the Union addresses? Let’s take each type of part of speech separately and compare them, then sum all four parts of speech and make an overall comparison as well. We’ll visualize differences using a box plot, and also conduct a two-sample T test.

We’ll need some additional python libraries, and need to set up some plot parameters to display our visualizations in our Jupyter Notebook:

from scipy.stats import ttest_ind
from statistics import mean, stdev
from math import sqrt
import matplotlib.pyplot as plt
%matplotlib inline
plt.rcParams.update({'font.size': 18})

And now we’ll plot the comparative adjective use of both groups.

Comparative Adjective Boxplot

It doesn’t look very promising – these distributions overlap rather a lot! Let’s do a T test to see if the difference is likely due to random variation:

ttest_ind(republican_speech["JJR"],democrat_speech["JJR"])
	Ttest_indResult(statistic=0.27734514630142165, pvalue=0.7877802746796846)

That’s a very high p value. 78.8% probability that the differences we see are due to random chance, not a true group difference.

Let’s move on to superlative adjectives!

fig = plt.figure(figsize=(10,10))
fig.suptitle('Superlative Adjective Usage', fontsize=30, fontweight='bold')

ax = fig.add_subplot(111)
ax.boxplot([democrat_speech["JJS"],republican_speech["JJS"]], labels=["Democrats", "Republicans"])

ax.set_xlabel('Party')
ax.set_ylabel('Percent of Language')

plt.show()

Superlative Adjective Boxplot

ttest_ind(republican_speech["JJS"],democrat_speech["JJS"])
	Ttest_indResult(statistic=-0.7498826364182734, pvalue=0.47247171059893134)

Once again, both visually and statistically, there’s no significant difference. Let’s do the same for both comparative and superlative adjectives!

fig = plt.figure(figsize=(10,10))
fig.suptitle('Comparative Adverb Usage', fontsize=30, fontweight='bold')

ax = fig.add_subplot(111)
ax.boxplot([democrat_speech["RBR"],republican_speech["RBR"]], labels=["Democrats", "Republicans"])

ax.set_xlabel('Party')
ax.set_ylabel('Percent of Language')

plt.show()

Comparative Adverb Boxplot

ttest_ind(republican_speech["JJS"],democrat_speech["JJS"])
	Ttest_indResult(statistic=1.0781202441947808, pvalue=0.30902662581074575)
fig = plt.figure(figsize=(10,10))
fig.suptitle('Superlative Adverb Usage', fontsize=30, fontweight='bold')

ax = fig.add_subplot(111)
ax.boxplot([democrat_speech["RBS"],republican_speech["RBS"]], labels=["Democrats", "Republicans"])

ax.set_xlabel('Party')
ax.set_ylabel('Percent of Language')

plt.show()

Superlative Adverb Boxplot

ttest_ind(republican_speech["RBS"],democrat_speech["RBS"])
	Ttest_indResult(statistic=0.12929601859348358, pvalue=0.8999668706431508)

Well, none of the individual parts of speech were notably different, but what if we sum them?

republican_all = republican_speech["JJR"] + republican_speech["JJS"] + republican_speech["RBR"] + republican_speech["RBS"]
democrat_all = democrat_speech["JJR"] + democrat_speech["JJS"] + democrat_speech["RBR"] + democrat_speech["RBS"]

ttest_ind(republican_all,democrat_all)
	Ttest_indResult(statistic=0.2468003972480926, pvalue=0.8106000875259137)

Nope, no finding here. It looks like we can reject my hypothesis that presidential speakers of different parties express different concentrations of comparative and superlative adjectives and adverbs!

How could this investigation have been done better? Well, we’d ideally like more text from more presidents – maybe get all of the SOTU addresses instead of a small chunk of years, or add in other texts. We also want to be careful to remove annotations like “(Applause)” and photo credits, which aren’t really part of the presidential address. We didn’t do that here. There are lots of ways to remix this. Let me know what you come up with and if you use this technique in your research!