
SQL 102 –
Beginners Guide to
SQL for Clinical Data
ARCUS Education

Today’s Itinerary
We will be touching on the following SQL topics:

• Case Statements

• Aggregate Functions

• String (“Text”) Functions & Filters

• Joins – (“Left” & ‘Inner” only for now)

Quick PSA about "Text Editors”
When Viewing or Editing Code it is a good idea to us a text editor specifically designed for
working with Code (rather than trying to save your code into something like a word file).

Quick Plug for Sublime Text

Sublime Text is a simple, easy to use, open source text/code editor that is both powerful and
easy on the eyes. Its Free! (**despite the occasional pop-up that will ask you if you want to
buy a license; but you can say no every time)

App Install Link:

https://www.sublimetext.com/3

https://www.sublimetext.com/3
https://github.research.chop.edu/CRU/Onboarding/blob/master/media/sublime-text.jpeg

Sample Data

For most of todays lesson we will be using the
following SQLite Dataset

Download synthea_sample.db file from the below sharefile link:

link https://chop.sharefile.com/d-s57101c68c9148cc9

You can navigate this sample database by using the “DB Browser for
SQLite” application (download link below):

link https://sqlitebrowser.org/dl/

https://chop.sharefile.com/d-s57101c68c9148cc9
https://sqlitebrowser.org/dl/

Case Statements
CASE WHEN […] THEN […] ELSE [...] END

SELECT
p.id as pat_id
,case

when p.gender ='M' then 'Male'
when p.gender = 'F' then 'Female'
else null

end as sex
, p.race
, p.ethnicity
,case when p.ethnicity = 'hispanic' then 1 end is_hispanic_ind

FROM patients as p
WHERE p.city = 'Boston'

Aggregate Functions

select

patients.state

,count(patients.id) patient_count

from patients

where

patients.gender = 'M'

group by

patients.state

having

count(patients.id) > 100

SQL Aggregate Functions:

COUNT() – counts rows in a specified table or view.
SUM() – calculates the sum of values.
MIN() – gets the minimum value in a set of values.
MAX() – gets the maximum value in a set of values.
AVG() – calculates the average of a set of values.

Anytime you use an aggregate function you will
(almost always) also need to use the GROU BY
clause to let you database know what “level” you
want it to aggregate your data on.

You can also use the HAVING clause anytime
GROU BY is used.

This HAVING clause will let you preform filtering
on the results of your Aggregate Functions (since
you’ll notice you can’t reference them in the
WHERE clause

Aggregate Functions
-- Example #2 – Patient “Wellness Visit” Count.

select

patient as patient_id

,sum(case when encounterclass = 'wellness' then 1 else 0 end) wellness_visit_count

from ENCOUNTERS

where start > '2019-01-01'

group by

patient_id

having

wellness_visit_count > 1

order by

wellness_visit_count

String Functions & Filters
The LIKE Operator can be used for “fuzzy” text filtering

% The percent sign represents zero, one, or multiple characters (i.e. it’s a wild card)

_ The underscore can be used to represents any single character

Aside for this LIKE operator, there are lots of other useful string manipulation functions exist
that you can used based on the need:

• Extract a specific sub-section from an existing string (see substr() function)

• Replace any character(s) from a string with something else (see replace() function)

select
count(distinct patient) patients_with_egg_allergy

from allergies as a
where

lower(a.description) LIKE '%egg%' --text like “egg”
and a.stop = '' --blank stop date (i.e. active)

https://www.w3schools.com/sql/func_mysql_substr.asp
https://www.w3schools.com/sql/func_mysql_replace.asp

Joins
Most queries require something more complex than the examples
shown above where we are only referencing a single table.

You may need to combine data from two or more tables. This
is where SQL’s JOIN functionality comes into play.

There are two basic things you need for a successful join:

• Join Criteria:
• What columns between your 2 input tables has to match in order for the

join to be a match?
• Such as Patient MRN, Account Number, Etc.

• Join Type:
• What Type of Join do you want to use (inner, left, full, etc)?

• This will effect the total number of rows returned by your join

Join Types

You can imagine a join as one of the combinations of a Venn diagram. If you’re
joining two tables, you can choose:

• Just the intersection, or an “inner” join – default “join” behavior

• The portion of the circle on the left as well as the intersection, known as a
“left” join

• Or all three sections of the diagram, know as a “full” join

Join Types

Left Join

select *
from A
left join B

on A.key = B.key

key key key

All keys from A, and any
“Matching” Join Keys in B

Join Result KeysJoin Input Keys

Left Join

select *
from A
left join B

on A.key = B.key

key col_1 col_2
1 This is
2 fake data
3 blah blah
4 yata yata

key col_4 col_5
3 black sheep
4 bata bing
5 bata boom
6 multi pass

key col_1 col_2 key col_4 col_5
1 This is
2 fake data
3 blah blah 3 black sheep
4 yata yata 4 bata bing

Tables are then “appended” to on another
based on the Join Keys provided

And because we used a LEFT JOIN, all rows
of Table A along with any rows from Table B
with “overlapping Join Keys” will be returned.

What does the result of the joined tables “look like”?

Left Join Example
Synthea Data

Select distinct

Patients.id as patient_id

, patients.gender

, patients.birthdate

,count (*) as num_encounters

from patients

left join encounters as e

on e.patient = patients.id

group by

patients.id

, patients.gender

, patients.birthdate

order by

count(*) desc

Inner Join

select *
from A
inner join B

on A.key = B.key

key
key key

“Matching” Join Keys Only

Join Result KeysJoin Input Keys

Inner Join

select *
from A
inner join B

on A.key = B.key

key col_1 col_2
1 This is
2 fake data
3 blah blah
4 yata yata

key col_4 col_5
3 black sheep
4 bata bing
5 bata boom
6 multi pass

key col_1 col_2 key col_4 col_5
3 blah blah 3 black sheep
4 yata yata 4 bata bing

Tables are then “appended” to on another
based on the Join Keys provided

And only rows with “overlapping Join Keys”
are returned (since this is an Inner Join).

What does the result of the joined tables “look like”?

Can you see the difference between this and the left join result set?

Inner Join Example
Synthea Data

SELECT DISTINCT
patients.id as patient_id
, encounters.start
, encounters.encounterclass

FROM patients
INNER JOIN encounters

ON patients.id = encounters.patient
WHERE

patients.city = 'Boston'

“Cartesian
Product”

A “Cartesian” Join is essentially a join that “results in more rows than it started with”.

This can be done intentionally by using something called a “cross” join, however it can also occur
un-intentionally if your join criteria result in an nA: nB relationship (i.e. if its not a 1:1 or 1:n
mapping).

“Cartesian” Joins can be very memory intensive operations as the size of the result set increases
exponentially with the size of their 2 input tables. Additionally, if they go “unnoticed”, they can
seriously effect the validity of your SQL reports (e.g. if your trying to infer a count of something by counting the
number of rows, an unintentional cartesian join will result in you overcounting the value you were trying to measure)

That said, unless you have a super good reaso n, you should never perform a join that isn’t
1:1 or 1:n.

Cartesian Join

“Stable” Cross Join (n:1)

“Un-Stable” Cross Join (n:m)

select count(*)
from allergies as a
cross join (--1 row table (results in a n:1 level join).

select '2020-05-19' today
) b
where

b.today between
start
and coalesce(–if no end date, supply default “far future” stop date.

(case when stop='' then null else stop end) –replacing “blank” value with null
, '2199-12-31’

)

select count(*)
from allergies as a
cross join (--m row table (results in a n:m level join).

select 'x' col1
union
select 'y' col1

) b

Cross Joins
“Stable” vs “Un - Stable”

count(*)  ∑1𝑁𝑁 𝑎𝑎𝑖𝑖∗ 𝑏𝑏(𝑖𝑖) = ∑1𝑁𝑁 𝑎𝑎𝑖𝑖 ∗ 2 = 2*N rows

count(*)  ∑1𝑁𝑁 𝑎𝑎𝑖𝑖∗ 𝑏𝑏(𝑖𝑖) = ∑1𝑁𝑁 𝑎𝑎𝑖𝑖 ∗ 1 = N rows

Where,
𝒂𝒂𝒊𝒊 = row i from table a
𝒃𝒃(𝒊𝒊) = rows from table b that match join key I
N = number of rows in table with the most rows

Where,
𝒂𝒂𝒊𝒊 = row i from table a
𝒃𝒃(𝒊𝒊) = rows from table b that match join key I
N = number of rows in table with the most rows

“Stable” Joins vs. “ Cartesian ” Joins

“Stable” Join (n:1)

“Cartesian” Join (n:m)

select count(*)
from allergies as a
inner join patients as p

on a.patient = p.id --this is an n:1 level join

select count(*)
from allergies as a
inner join encounters as b

on a.patient = b.patient --this is an n:m level join

1:n (and n:1) joins can be considered “Stable” because the result set of
this join will have the same number of rows of as “the join input table with
the most rows”

n:m (where n>1 & m>1) joins are referred to as Cartesian Joins.

The final result set of a Cartesian join will have a total row count less
than or equal to the “product of the number of rows in both input tables

A
1
1
1
2
2
2
3
3

P

1
2
3
4

A P
1 1
1 1
1 1
2 2
2 2
2 2
3 3
3 3

=

A
1
1
1
2
2
2

E
1
1
2
2

A E
1 1
1 1
1 1
1 1
1 1
1 1
2 2
2 2
2 2
2 2
2 2
2 2

=

count(*)  ∑1𝑁𝑁 𝑎𝑎𝑖𝑖 ∗ 1 ≤ N rows

count(*)  ∑1𝑁𝑁 𝑎𝑎𝑖𝑖∗ 𝑏𝑏(𝑖𝑖) ≤ N*M rows

8 rows
4 rows

8 rows

6 rows
4 rows

12 rows

We can actually take a look at this ourselves (Provided we have
the necessary CITI training completed) from the ARCUS
application web portal (only available from CHOP network):

Lets check out the site! https://app.arcus.chop.edu

Follow Along with me:
• Log in (button in upper right corner of the page)

• Sign the terms of use
• Go to the “Data Repository Query” tab

Looking at Data in the ADR

https://app.arcus.chop.edu/

Looking at Data in the ADR
You can preview the data schema (the shape of the data)
by following the “question mark” path in the same tab.

Hover over that question mark icon, then click on the
link for the “ADR Data Dictionary”.

A Realistic Join Query on ARCUS Data
The below example query returns a count of all patients with active
”Complex Chronic Conditions”

--example #1 : CCC Patients Query Template
select

count(distinct patient.pat_id) ccc_patient_count
from patient
inner join problem_list

on patient.pat_id = problem_list.pat_id
inner join master_diagnosis

on problem_list.dx_id = master_diagnosis.dx_id
where

problem_list.prob_resolved_year is null
and problem_list.chronic_yn = 'Y'

A Realistic Join Query on ARCUS Data
The example ADR query below returns results for all labs ordered within the
CHOP system:

--example #2 : Lab Query Template
select distinct

proc_order.proc_ord_id
,proc_order.pat_id
,proc_order.encounter_id
,proc_result.result_year
,proc_order.proc_ord_desc
,proc_result.line
,proc_result.result_component_name
,proc_result.value_number
,proc_result.ref_low
,proc_result.ref_high
,proc_result.ref_range
,proc_result.ref_unit
,proc_result.abnormal_status_name
,proc_result.loinc_code

from adr_coded.procedure_order as proc_order
inner join adr_coded.procedure_order_result as proc_result

on proc_order.proc_ord_id = proc_result.proc_ord_id

Any Questions?

Arcus Education Homepage:

https://education.arcus.chop.edu/

Recordings Archive (recording for this Lecture to be added soon!)

https://education.arcus.chop.edu/recorded-webinars/

Stay Tuned for Updates on the SQL 201 & 202 Lecture Series!

https://education.arcus.chop.edu/
https://education.arcus.chop.edu/recorded-webinars/

	SQL 102 –�Beginners Guide to SQL for Clinical Data
	Today’s Itinerary
	Quick PSA about "Text Editors”
	Sample Data
	Case Statements
	Aggregate Functions
	Aggregate Functions
	String Functions & Filters
	Joins
	Join Types
	Join Types
	Left Join
	Left Join
	Left Join Example�Synthea Data
	Inner Join
	Inner Join
	Inner Join Example�Synthea Data
	Slide Number 18
	Cross Joins�“Stable” vs “Un-Stable”
	“Stable” Joins vs. “Cartesian” Joins
	Looking at Data in the ADR
	Looking at Data in the ADR
	A Realistic Join Query on ARCUS Data
	A Realistic Join Query on ARCUS Data
	Slide Number 25

